Are flaws in peer review someone else’s problem?

That stack of fellowship applications piled up on the coffee table isn’t going to review itself. You’ve got twenty-five to read before the rapidly approaching deadline, and you knew before you accepted the reviewing job that many of the proposals would fall outside your area of expertise. Sigh. Time to grab a coffee and get on with it.

As a professor of physics with some thirty-five years’ experience in condensed matter research, you’re fairly confident that you can make insightful and perceptive comments on that application about manipulating electron spin in nanostructures (from that talented postdoc you met at a conference last year). But what about the proposal on membrane proteins? Or, worse, the treatment of arcane aspects of string theory by the mathematician claiming a radical new approach to supersymmetry? Can you really comment on those applications with any type of authority?

Of course, thanks to Thomson Reuters there’s no need for you to be too concerned about your lack of expertise in those fields. You log on to Web of Knowledge and check the publication records. Hmmm. The membrane protein work has made quite an impact – the applicant’s Science paper from a couple of years back has already picked up a few hundred citations and her h-index is rising rapidly. She looks to be a real ‘star’ in her community. The string theorist is also blazing a trail.

Shame about the guy doing the electron spin stuff. You’d been very excited about that work when you attended his excellent talk at the conference in the U.S. but it’s picked up hardly any citations at all. Can you really rank it alongside the membrane protein proposal? After all, how could you justify that decision on any sort of objective basis to the other members of the interdisciplinary panel…?

Bibliometrics are the bane of academics’ lives. We regularly moan about the rate at which metrics such as the journal impact factor and the notorious h-index are increasing their stranglehold on the assessment of research. And, yet, as the hypothetical example above shows, we can be our own worst enemy in reaching for citation statistics to assess work outside – or even firmly inside – our  ‘comfort zone’ of expertise.

David Colquhoun, a world-leading pharmacologist at University College London and a blogger of quite some repute, has repeatedly pointed out the dangers of lazily relying on citation analyses to assess research and researchers. One article in particular, How to get good science, is a searingly honest account of the correlation (or lack thereof) between citations and the relative importance of a number of his, and others’, papers. It should be required reading for all those involved in research assessment at universities, research councils, funding bodies, and government departments – particularly those who are of the opinion that bibliometrics represent an appropriate method of ranking the ‘outputs’ of scientists.

Colquhoun, in refreshingly ‘robust’ language, puts it as follows:

“All this shows what is obvious to everyone but bone-headed bean counters. The only way to assess the merit of a paper is to ask a selection of experts in the field.

“Nothing else works.

“Nothing.”

An ongoing controversy in my area of research, nanoscience, has thrown Colquhoun’s statement into sharp relief. The controversial work in question represents a particularly compelling example of the fallacy of citation statistics as a measure of research quality. It has also provided worrying insights into scientific publishing, and has severely damaged my confidence in the peer review system.

The minutiae of the case in question are covered in great detail at Raphael Levy’s blog so I won’t rehash the detailed arguments here. In a nutshell, the problem is as follows. The authors of a series of papers in the highest profile journals in science – including Science and the Nature Publishing Group family – have claimed that stripes form on the surfaces of nanoparticles due to phase separation of different ligand types. The only direct evidence for the formation of those stripes comes from scanning probe microscopy (SPM) data. (SPM forms the bedrock of our research in the Nanoscience group at the University of Nottingham, hence my keen interest in this particular story.)

But those SPM data display features which appear remarkably similar to well known instrumental artifacts, and the associated data analyses appear less than rigorous at best. In my experience the work would be poorly graded even as an undergraduate project report, yet it’s been published in what are generally considered to be the most important journals in science. (And let’s be clear – those journals indeed have an impressive track record of publishing exciting and pioneering breakthroughs in science.)

So what? Isn’t this just a storm in a teacup about some arcane aspect of nanoscience? Why should we care? Won’t the problem be rooted out when others fail to reproduce the work? After all, isn’t science self-correcting in the end?

Good points. Bear with me – I’ll consider those questions in a second. Take a moment, however, to return to the academic sitting at home with that pile of proposals to review. Let’s say that she had a fellowship application related to the striped nanoparticle work to rank amongst the others. A cursory glance at the citation statistics at Web of Knowledge would indicate that this work has had a major impact over a very short period. Ipso facto, it must be of high quality.

And yet, if an expert – or, in this particular case, even a relative SPM novice – were to take a couple of minutes to read one of the ‘stripy nanoparticle’ papers, they’d be far from convinced by the conclusions reached by the authors. What was it that Colquhoun said again? “The only way to assess the merit of a paper is to ask a selection of experts in the field. Nothing else works. Nothing.”

In principle, science is indeed self-correcting. But if there are flaws in published work who fixes them? Perhaps the most troublesome aspect of the striped nanoparticle controversy was highlighted by a comment left by Mathias Brust, a pioneer in the field of nanoparticle research, under an article in the Times Higher Education:

“I have [talked to senior experts about this controversy] … and let me tell you what they have told me. About 80% of senior gold nanoparticle scientists don’t give much of a damn about the stripes and find it unwise that Levy engages in such a potentially career damaging dispute. About 10% think that … fellow scientists should be friendlier to each other. After all, you never know [who] referees your next paper. About 5% welcome this dispute, needless to say predominantly those who feel critical about the stripes. This now includes me. I was initially with the first 80% and did advise Raphael accordingly.”

[Disclaimer: I know Mathias Brust very well and have collaborated, and co-authored papers, with him in the past].

I am well aware that the plural of anecdote is not data but Brust’s comment resonates strongly with me. I have heard very similar arguments at times from colleagues in physics. The most troubling of all is the idea that critiquing published work is somehow at best unseemly, and, at worst, career-damaging.  Has science really come to this?

Douglas Adams, in an inspired passage in Life, The Universe, and Everything, takes the psychological concept known as “someone else’s problem (SEP)” and uses it as the basis of an invisibility ‘cloak’ in the form of an SEP-field. (Thanks to Dave Fernig, a fellow fan of Douglas Adams, for reminding me about the Someone Else’s Problem field.) As Adams puts it, instead of attempting the mind-bogglingly complex task of actually making something invisible, an SEP is much easier to implement. “An SEP is something we can’t see, or don’t see, or our brain doesn’t let us see, because we think that it’s somebody else’s problem…. The brain just edits it out, it’s like a blind spot”.

The 80% of researchers to which Brust refers are apparently of the opinion that flaws in the literature are someone else’s problem. We have enough to be getting on with in terms of our own original research, without repeating measurements that have already been published in the highest quality journals, right?

Wrong. This is not someone else’s problem. This is our problem and we need to address it.

Philip Moriarty

Philip Moriarty

Philip Moriarty is a Professor of Physics at the University of Nottingham. His research interests lie in what has occasionally been described as “extreme nanotech” in that he works alongside a talented bunch of nanoscientists to prod, poke, push, pick, and pull individual atoms and molecules in order to explore forces and interactions down to the single chemical bond limit. Moriarty also has a keen and long-standing interest in science communication and public engagement. He is a member of the Sixty Symbols team that was awarded the Institute of Physics Kelvin prize in 2016 for “innovative and effective promotion of the public understanding of physics”. While he doesn't share his infamous namesake's fascination with the binomial theorem, Moriarty enjoys exploring the maths-music-physics interface including, in particular, the deep and fundamental links that exist between quantum mechanics and heavy metal music (a theme discussed at length in his book, “When the Uncertainty Principle Goes to 11”). He blogs at https://muircheartblog.wordpress.com.
Philip Moriarty
FacebooktwitterFacebooktwitter

Comment via Facebook

Comment via Disqus

iop-blog

Comment via Google+