The spirit-crushing impact of impact

The molecular structure of graphene. The “wonder material” was discovered from curiosity-driven fundamental science without a commercial application in mind.

A couple of years ago I contributed a chapter entitled “Science as a Public Good” to a book called A Manifesto for the Public University, edited by John Holmwood, a colleague in the School of Sociology and Social Policy here in Nottingham. As a prelude to the following diatribe   cri de coeur reasoned dissection of the impact agenda, here’s the opening paragraph from that chapter (you can read both the chapter and, indeed, the entire book, for free via the preceding links):

“I have a confession to make. It’s a difficult admission in the current funding climate for academics in the UK, but here it is: I am a scientist. Not an engineer. Not a technologist. And certainly not an entrepreneur. I pursue basic research into fundamental questions about the properties of matter on a variety of different length scales (ranging, in my case, from sub-atomic to sub-millimetre dimensions), in common with a very large number of my colleagues working in the physical and life sciences in British universities. Whether or not this research can be translated into a marketable product, exploited as profitable intellectual property (IP), or applied in technology is not what motivates me. My motivation, again in common with the majority of academic scientists in the UK,1 lies in improving our understanding of nature, generating (not protecting) new knowledge, and disseminating my findings to other scientists, students and society at large.”

Clare Burrage, a Royal Society University Fellow in the Particle Theory Group at Nottingham – and, as I mentioned in yesterday’s post, a fellow participant in the Royal Society MP-Scientist pairing scheme – managed to distil the essence of the paragraph above into a pithy one-sentence question following a presentation by Alexandra Saxon, Head of Research Council UK’s Strategy Unit, in Westminster on Tuesday afternoon this week.

Before I reveal Clare’s question, here’s a slide which is wholly representative of the content of Alexandra’s talk:

The entire focus of the RCUK presentation was on engagement with business and industry. (It’s worth noting that this was given to a room-full of scientists). Fundamental science that didn’t link to some aspect of commercialisation or direct socioeconomic impact didn’t get a look-in.

Clare’s question following the presentation neatly summed up the feelings of quite a few in the room. I had to struggle to maintain my usual dignified silence (*cough*) and not cheer out loud when Clare asked this:

“I’m a researcher working on theoretical particle physics – where do I fit in?”

To be fair to Alexandra, she, along with a number of other RCUK representatives, regularly faces the music in front of crowds of academics and it is to her, and her colleagues’, immense credit that there is a strong willingness to engage with disgruntled academics. It’s a shame, however, that the willingness to interact with rank-and-file academics sometimes isn’t quite as evident further up the chain of the RCUK hierarchy. The Engineering and Physical Sciences Research Council, for example, has recently had its wrist slapped about failures to consult sufficiently with academics about its policies (but, again to its credit, has implemented policy changes to deal with this criticism).

Alexandra’s talk was certainly not the first time the spectre of impact reared its head during the days we spent in Westminster. The previous day’s panel featuring Robert Winston, Alan Malcolm, and Chris Tyler amongst others, also touched on the subject of the impact agenda.

I’ve heard the justifications as to why academics should embrace the impact agenda, including those offered by Robert Winston and Alexandra Saxon, countless times before. Let’s take a look at the five most common reasons used to incentivise scientists about impact:

1. Without the impact agenda, the science budget would have been cut dramatically – the flat-cash settlement we have ‘enjoyed’ over the last few years would not have been possible. Anti-impact sentiment threatens the science budget.

First, there is a very troublesome aspect of this argument which suggests that academics should keep their heads well below the parapet and just be happy that they have been protected from the vicious spending cuts imposed across the rest of the public sector. I’ve previously described this as a supine position to adopt, and, without wanting to open old wounds, I remain of that opinion. If academics see problems with just how the research councils distribute funding then it is highly questionable to suggest that they should put those concerns to one side so as not to affect the funding flow. Whatever happened to the traditional university role of speaking truth to power?

The broader point, however, is that expecting academics, regardless of their discipline, to describe the socioeconomic impact of their work in advance of the research project being carried out is antithetical to the exploratory nature of fundamental research. As the University of Nottingham put it in a response to a consultation on the introduction of economic impact criteria into the peer review process back in 2007:

“[This] appears to fly in the face of the purpose of “research” within universities … could stifle highly imaginative, original and creative work, or lead to dubious, often irrefutable, claims in many areas of science – especially fundamental/“blue skies” research.”

(Sorry to be so parochial – you can find very similar statements from Cambridge and Glasgow, for example, in the chapter from A Manifesto for the Public University linked to above).

Moreover, why is asking academics to fill in a Pathways to Impact statement (and, for EPSRC, an account of National Importance) at the proposal stage, i.e. prior to starting a research project, the best way to demonstrate the socioeconomic impact of research to government?

2. You’re a publicly funded academic. You can’t just stay in your ivory tower – you have to think about the societal impact of your work.

If there’s one justification for the impact agenda that really gets my goat and grinds my gears, it’s this one. The impact agenda, for the reasons detailed in that chapter from AMPU, was not introduced because the research councils/HEFCE/government suddenly became extremely concerned that not enough academics were engaging with the public. It was introduced as a direct response to a series of government reports on the need to change the culture in university departments so as to make academia more responsive to business and industry needs.

I, along with a significant majority of my colleagues, am intensely aware of my obligations as a publicly funded academic, and spend a significant amount of time on public engagement and outreach. For example, when I finish writing this I’m boarding a train to Loughborough to give a talk to a school there on the relationship between rock music and quantum physics. (I’ll also not pass up this opportunity to plug Brady Haran’s channels, and Sixty Symbols in particular).

One can also very easily make the counter-argument that, by incentivising academics to interact closely with business and industry, the disinterested and independent qualities of academic research are being progressively eroded. That is, the impact agenda, like many aspects of the coalition government’s policies is not about improving the public good character of university science at all: it’s about making the public sector responsive to private business.

I am, of course, not for one minute suggesting that all academic-industry collaborations are compromised by the need to improve the company’s bottom line. Nonetheless, there are some shocking examples of where academic research has been distorted badly due to commercial pressures. I referred yesterday to the tagline of George Monbiot’s recent article: “Government policy in Britain, Canada and Australia is crushing academic integrity on behalf of corporate power”. The impact agenda certainly doesn’t help to bolster the integrity of academic research in the face of commercial pressures.

3. The government expects a return on its investment in university research.

Richard Jones, PVC for Research and Innovation at the University of Sheffield, has pointed out that the key reason why there is intense pressure on UK academics to demonstrate the impact of their work is that private sector investment in R&D in the UK (as a percentage of GDP) heavily lags behind that of other OECD nations. Thus, academia is expected to pick up the slack for this lack of investment from the private sector.

The key thing here is that fundamental scientific research is but one component of a highly complex innovation ecosystem. Although the motivation for academics to carry out basic, so-called curiosity-driven science is very often not the economic impact of the work – we instead are focussed on understanding fundamental aspects of nature – it is clear that the most disruptive innovations are exceptionally unlikely to stem from work which is focused on near-market impact. In this sense, by progressively skewing the research base towards commercial, near-market R&D, the total return on government investment may well be damaged, not enhanced.

Expecting academics to handle all aspects of the innovation system – from fundamental research to manufacturing and “product to market” – is in any case an exceptionally naïve strategy. Andre Geim pointed out in the Guardian earlier this week that perhaps the government should look somewhere other than the universities when apportioning blame for the so-called “valley of death” between fundamental research and commercial exploration. Jones has made this argument convincingly for quite some time.

Moreover, an exceptionally important – arguably, the most important – contribution to the return on investment for government spending on university science is the “human capital” we produce. David Willetts clearly recognised this when he spoke of the “absorptive capacity” of our society and innovation systems shortly after the Coalition government came to power.

4. “But it’s not all about economic impact – public engagement is impact as well.”

It is laudable that the research councils recognise that public engagement and outreach are essential components of the impact agenda. Why then do RCUK representatives focus so heavily on links with business and industry? In the talk on Tuesday – and this is true of very many other talks from research council representatives I’ve seen – lip service, at best, is paid to the remarkably inspiring fundamental science stemming from UK academia. Geim and Novoselov’s Nobel prize-winning discovery of graphene – and the government’s investment in commercialisation of the carbon wunderkind – are regularly highlighted without mention that graphene stemmed not from the impact agenda or directed programmes of the type to which EPSRC is now fully committed, but from exploratory, curiosity-driven fundamental science with no commercial application in mind.

One could also ask why, if EPSRC, for example, is so committed to public engagement, it no longer has a dedicated budget to fund public engagement projects.

5. “We’re just as committed to fundamental science as we ever were”

Lilian Greenwood, the MP with whom Clare Burrage and myself are paired in the Royal Society scheme, asked an excellent question of David Willetts yesterday morning during the Business, Innovation, and Skills questions session:

“Does the Minister agree that investing in fundamental research is vital to inspire the next generation of scientists and engineers and to create conditions for the serendipitous discoveries of the future?”

David Willetts responded:

“I completely agree with the Honourable Lady, which is why the Government support fundamental research. Only last week I went to the launch of £250 million of public money for centres of doctoral training run by the Engineering and Physical Sciences Research Council”

Similarly, research council and HEFCE representatives repeatedly claim that there has been no change in their support of fundamental research.

The key question here is just what is meant by fundamental research. It is interesting that each and every one of the new Centres for Doctoral Training to which Willetts refers has industrial partners (as compared to 50% of CDTs involving industrial collaboration in the previous round). Moreover, there was a very strong steer from EPSRC that those CDTs should have training programmes “co-created” with industry. One might reasonably ask just what Mr. Willetts, BIS, RCUK, and HEFCE understand by the term “fundamental research”.

As I’ve also harped on about previously, it is rather difficult to understand RCUK’s commitment to fundamental research when the #1 tip in its Top Ten list of tips on how to complete a grant application is “Draft the impact summary very early in your preparation, so that it informs the design of your research”. That’s a great piece of advice if you’re writing a proposal to do applied, near-market research, or R&D for a company. It’s certainly not how fundamental science proceeds. Indeed, one could credibly argue that it’s a distortion of the scientific method.

This has been a long (but cathartic!) post, for which my apologies. I would like to close by stating that I’m aware that a lot of what I’ve written above could prompt strong responses. I would welcome the opportunity to debate these issues in the comments section below. Given RCUK’s and HEFCE’s commitment to public accountability in all areas of research, comments from research/funding council representatives would be particularly welcome.

 

 

 

Philip Moriarty

Philip Moriarty

Philip Moriarty is a Professor of Physics at the University of Nottingham. His research interests lie in what has occasionally been described as “extreme nanotech” in that he works alongside a talented bunch of nanoscientists to prod, poke, push, pick, and pull individual atoms and molecules in order to explore forces and interactions down to the single chemical bond limit. Moriarty also has a keen and long-standing interest in science communication and public engagement. He is a member of the Sixty Symbols team that was awarded the Institute of Physics Kelvin prize in 2016 for “innovative and effective promotion of the public understanding of physics”. While he doesn't share his infamous namesake's fascination with the binomial theorem, Moriarty enjoys exploring the maths-music-physics interface including, in particular, the deep and fundamental links that exist between quantum mechanics and heavy metal music (a theme discussed at length in his book, “When the Uncertainty Principle Goes to 11”). He blogs at https://muircheartblog.wordpress.com.
Philip Moriarty
FacebooktwitterFacebooktwitter

Comment via Facebook

Comment via Disqus

iop-blog

Comment via Google+